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Equilibrium and dynamical properties of semiflexible chain molecules
with confined transverse fluctuations

Ludger Harnau and Peter Reineker
Abteilung Theoretische Physik, Universita¨t Ulm, 89069 Ulm, Germany

~Received 5 May 1999!

The partition function of a semiflexible chain molecule with harmonically confined transverse fluctuations is
calculated. Equilibrium properties exhibit qualitative differences between the weak and the strong confinement
behavior. The relaxation times of undulations perpendicular to the chain molecule contour are calculated on the
basis of a Langevin equation approach. With increasing confinement a decrease of the relaxation times is
found. As a consequence the mean square displacement of monomers and the dynamic structure factor are
strongly influenced by the confinement. The comparison of the calculated mean square displacement with
diffusing wave spectroscopy measurements of actin filaments exhibits good agreement.
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PACS number~s!: 87.15.By, 36.20.Ey, 61.25.Hq
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I. INTRODUCTION

It has long been realized that the key physics determin
the properties of long chain molecules in melts or in e
tangled solutions arises from the topological interaction
tween the molecules. The most popular theoretical fram
work in which topological interactions are taken into accou
is the tube model of de Gennes@1#, and of Doi and Edwards
@2#. The topological constraints by which the chain mo
ecules may not cross each other are assumed to be equiv
for each molecule to a tube surrounding its own conto
Hence, motions perpendicular to the tube contour are c
fined while those along the contour are permitted. These
tions have been visualized by video microscopy meas
ments of actin filaments@3# and of DNA in entangled
solutions @4#. Thus, one has direct evidence that tubel
constraints exist in these systems.

Chain molecules trapped in a tube exhibit strikingly d
ferent features from those in a bulk. The chain molecules
deflected back and forth by the tube boundary. Depending
the tube radius, relaxation processes perpendicular to
tube axis are suppressed while the motion along the t
contour is the only unrestricted type of motion at tim
longer than an average monomer takes to diffuse across
tube radius. Consequently, equilibrium, as well as dynam
properties, are changed. Equilibrium properties of chain m
ecules confined within a tube, such as the free energy
crease or the chain molecule conformation have been o
tense interest@1,5–8#. Dynamical properties have bee
worked out for flexible linear chain molecules inside a tu
@1,8–10#. Recently, there has been increasing interest in
dynamics of semiflexible chain molecules in confined en
ronments@11–14#.

The theoretical investigations on dynamical properties
confined chain molecules performed so far mainly conc
trate on the curvilinear motion of the molecules along th
contour. In this paper we focus on constraint fluctuatio
perpendicular to the molecules contour. These transv
fluctuations are of particular importance for rather stiff cha
molecules, where internal longitudinal degrees of freed
PRE 601063-651X/99/60~4!/4671~6!/$15.00
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are suppressed due to the constraint of inextensibility.
determine the free energy of a semiflexible chain molecule
a harmonic confinement potential using the path integral
a general second-derivative Lagrangian. The relaxation tim
characterizing transverse undulations are calculated. U
these relaxation times we compute the mean square disp
ment of the monomers and the dynamic structure factor.

The paper is organized as follows. The chain mode
introduced in Sec. I. The free energy of a polymer chain a
equilibrium correlation functions are calculated in Sec. II.
Sec. III dynamical properties are discussed. Finally, Sec.
summarizes our findings.

II. SEMIFLEXIBLE CHAIN MODEL

The semiflexible chain model is represented as a cont
ous, differentiable space curver (s), wheres indicates dis-
tances along the chain. The bending energyHb of a chain
molecule of contour lengthL is given by

Hb

kBT
5

l p

2 E0

L

dsS ]2r ~s!

]s2 D 2

, ~2.1!

wherel p is the persistence length@15#. Calculations of equi-
librium properties of the semiflexible chain model are dif
cult due to the local inextensibility constraintu]r (s)/]su2
51. A variety of approximations have been devised to a
proach this problem. The most successful approximation
to impose the global constraint

K 1

LE0

L

dsS ]r ~s!

]s D 2L 51 ~2.2!

rather than the local one@16–19#. The brackets designate a
ensemble average. Thus, the term

Hm

kBT
5

m

l p
E

0

L

dsS ]r ~s!

]s D 2

~2.3!

is added to the potential energy~2.1! and the dimensionles
Lagrangian multiplierm is determined by demanding th
4671 © 1999 The American Physical Society
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4672 PRE 60LUDGER HARNAU AND PETER REINEKER
constraint~2.2! to hold. This approximation is known to hol
for the calculation of various equilibrium properties, such
the radius of gyration and the end-to-end distance@17,19#.

Here we consider a semiflexible chain molecule with h
monically confined transverse fluctuations

K 1

LE0

L

dsr'
2 ~s!L 5R2, ~2.4!

wherer'(s) is the position vector perpendicular to the cha
contour andR designates a tube radius. Due to this constra
the number of conformations allowed for the chain molec
is much smaller than in free space. The purpose of the c
straint~2.4! is to restrict the transverse displacement cons
erably but not totally to an interval of width 2R. Thus, the
chain molecule is confined in a tube-like cage. Figure
shows a schematic presentation of the confined chain m
ecule. For the calculation of the allowed chain conformatio
we add the confinement potential

Hcon

kBT
5

n

2l p
3E0

L

dsr'
2 ~s! ~2.5!

to the potentials~2.2! and~2.3!. The dimensionless Lagrang
ian multiplier is denoted asn. The partition function of the
semiflexible chain molecule, under the influence of the c
finement potential, reads

Z5E expF2
l p

2 E0

L

dsS ]2r ~s!

]s2 D 2

2
m

l p
E

0

L

dsS ]r ~s!

]s D 2

2
n

2l p
3E0

L

dsr'
2 ~s!GDr . ~2.6!

The position vectorr (s) can be decomposed into its comp
nentsr i(s) parallel to the chain molecule contour andr'(s).
Then the functional integral~2.6! is straightforward and cor
responds to a path integral for a general second-deriva
Lagrangian@20#. The Lagrangian multipliersm and n are
obtained from demanding the expectation values@Eqs.~2.2!
and ~2.4!# to hold. Hence, the free energyF52kBT ln Z is
calculated and the functional

I 5
F

kBT
2

mL

l p
2

nR2L

2l p
3

~2.7!

FIG. 1. Schematic presentation of a semiflexible chain molec
of contour lengthL and persistence lengthl p . The thick black and
gray lines represent possible configurations apart in time. The m
square displacement perpendicular to the chain contour~2.4! is
given byR2.
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is extremized with respect tom andn. Once the Lagrangian
multipliers are computed for the system, various equilibriu
and dynamical properties can be investigated.

III. EQUILIBRIUM PROPERTIES

The determination of the Lagrangian multipliers leads
nonlinear equations which are solved numerically. But so
characteristic features can be obtained from analytical
proximations. An evaluation of the partition function~2.6!
exhibits that the functionalI reads approximately

I l p

L
5Am

2
1~m1Am22n!1/2

1~m2Am22n!1/22m2
n

2 S R

l p
D 2

. ~3.1!

As a result, the Lagrangian multipliers do not depend on
contour length. In the limit of weak confinementR/ l p@1,
the Lagrangian multipliers are given bym59/8 and n
54(l p /R)4/9 whereas, for strong confinementR/ l p!1, we
find m51/8 andn5( l p /R)8/3/22/3. From the numerical cal-
culations it follows that there is a transition pointR/ l p'0.9
with m25n. To study the effect of this transition on equilib
rium properties, we determine the correlation function

h~s!5
^rW'~s!•rW'~0!&

^rW'~0!•rW'~0!&
. ~3.2!

In Fig. 2 we present this correlation function for two diffe
ent R/ l p values. From the figure it is apparent thath(s)
exhibits a qualitatively different behavior below and abo
the transition point. While it decays purely exponentia
above the transition point, there are additional oscillato
modulations below the transition point. In this limit the co
relation function is approximately given by

h~s!5A2 expF2S 1

4l pR2D 1/3

sGsinF S 1

4l pR2D 1/3

s1
p

4 G .

~3.3!

le

an

FIG. 2. Computed correlation functionh(s) for two R/ l p values
according to Eq.~3.2!: R/ l p50.3, solid line;R/ l p51, dotted line.
The chain length was fixed toL/ l p525.
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The period of the oscillations in the smallR/ l p regime is the
Odijk deflection lengthl5(4l pR2)1/3 @7#, at which a chain
molecule is deflected by the tube boundary in order to c
form to the constraints~2.4!. The observed transition is du
to competing effects in a one-dimensional system with lo
interactions and is similar to the one recently found by L
erpool et al. for their double-stranded semiflexible cha
model @18#.

In the smallR/ l p regime the confinement free energyDF,
defined by the increase in the free energy of a chain mole
enclosed within a tube with respect to the one in the bu
scales like

DF
kBT

;
L

l
. ~3.4!

This expression corresponds to the one derived by Helf
and Harbich for confined membrane surfaces@21#.

IV. DYNAMICAL PROPERTIES

In the following we investigate the dynamics of fluctu
tions perpendicular to the chain molecule contour. The
ergy functional in the exponent of Eq.~2.6! gives the restor-
ing force to a fluctuation. Neglecting the inertia force
compared to the friction force, the Langevin equation for
motions perpendicular to the chain molecule contour is gi
by

g
]

]t
r'~s,t !2

2m

l p
kBT

]2

]s2
r'~s,t !1 l pkBT

]4

]s4
r'~s,t !

1
n

l p
3

kBTr'~s,t !5f'~s,t !, ~4.1!

whereg is the friction constant per unit length of the cha
molecule andf'(s,t) is a white noise stochastic force. Th
frictional force results from irreversible short time visco
processes. The second and third terms in Eq.~4.1! describe
intramolecular forces, while the fourth term represents
confinement force. Ans-dependent friction coefficient ma
be used to take the hyrodynamic interaction in a dilute so
tion into account@22#. The expansion of the position vecto

r'~s,t !5 (
n51

`

xn~ t !cn~s!, ~4.2!

in terms of the eigensolutions

cn~s!5A2

L
cosFnp

L
sG ~4.3!

of the corresponding eigenvalue equation

g

tn
cn~s!5

2m

l p
kBT

]2

]s2
cn~s!

2 l pkBT
]4

]s4
cn~s!2

n

l p
3

kBTcn~s!, ~4.4!
-

l
-

le
,

h

-

e
n

e

-

yields an equation for amplitudexn(t) and from there for the
time correlation function̂xn(t)•xn(0)&:

]

]t
^xn~ t !•xn~0!&52

1

tn
^xn~ t !•xn~0!&. ~4.5!

The solution of this differential equation is given by

^xn~ t !•xn~0!&5
2kBT

g
tn expF2

t

tn
G , ~4.6!

wheretn are the relaxation times of the normal mode ana
sis and read

g

tnkBT
5

2m

l p
S np

L D 2

1 l pS np

L D 4

1
n

l p
3

. ~4.7!

The first six relaxation times are plotted in Fig. 3 as a fun
tion of the tube radiusR. In the calculations the contou
lengthL5100 nm and the persistence lengthl p51 nm were
fixed. With decreasing tube radius we find a decrease of
relaxation times. At a short time scale a chain molecule
dergoes local wriggling motions within the tube. These m
tions are described by undulations with large mode numb
n. Therefore, relaxation times with large mode numbers
less influenced by the constraints than those with small m
numbers. In particular, bending modestn;L4/n4 become
dominant for short times@23#.

The relaxation times presented in Fig. 3 should not
confused with the much longer relaxation times characte
ing the curvilinear reptational motion. Reptation theories
entangled polymers assume that temporary topological c
straints formed by surrounding polymers force the polym
to move anisotropically through the melt by favoring motio
along their own contours@1,2#. For reptating chain molecule
the relaxation times describing the curvilinear motion a
enhanced relative to the relaxation times of unentang
chain molecules. This increase has been confirmed by c
puter simulations@24# and is an essential ingredient in the
ries of long-time dynamics in polymer melts~see, for ex-
ample,@25–27#!.

FIG. 3. First six relaxation times for a confined chain molecu
of length L5100 nm and of persistence lengthl p51 nm as func-
tion of the tube radiusR. Mode numbern increases from top to
bottom.
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The dynamics of chain molecules is often characteri
by its mean square displacements. Here we investigate
transverse mean square displacementg(t). Using the trans-
formation~4.2! and the correlation function~4.6!, this quan-
tity is given by

g~ t !5
1

LE0

L

dŝ „r'~s,t !2r'~s,0!…2&

5
4kBT

gL (
n51

`

tnS 12expF2
t

tn
G D . ~4.8!

In Fig. 4 we presentg(t) ~solid line! together with experi-
mental data of actin filament networks@28#. In the calcula-
tions the persistence length, the tube radius, and the con
length were fixed to l p512 mm, R516 nm, and L
540 mm. From the figure it follows that, at short times,g(t)
does not increase linearly in time but instead increases
diffusively with a power lawg(t);t3/4. This power law is a
direct consequence of the bending relaxation timestn
;1/n4 @23# and is well known for actin filaments and micro
tubules@29–31#. Furthermore, there is a crossover to a p
teau at longer times where the mean square displaceme
only very weakly time dependent. The plateau valueg(t)
54R2 provides a direct measure of the confinement. On
time scale of the plateau, the normal modes are alre
equilibrated. Small deviations between our model calcu
tions and the experimental data are most likely due to su
imposed diffusion of the spherical probes inside the ac
network @28#.

The calculation ofg(t) for flexible chain molecules (l p
50.5 nm) exhibits a power lawg(t);t1/2 for short times
and a long-time plateau. These results are in agreement
Monte Carlo simulations of flexible chains confined in
straight tubes@10#.

In general, the calculation of dynamical properties, su
as dynamic structure factors and viscoelastic moduli requ
the knowledge of the time evolution of the position vec
r (s,t). Because we are mainly interested in transverse fl
tuations, we study only time and length scales dominated
transverse motions. In dynamic scattering experiments
incoherent dynamic structure factor

FIG. 4. Computed mean square displacementsg(t) ~solid line!
together with experimental data~open diamonds! of actin filament
networks@28#. The dotted line displays the power lawg(t);t3/4.
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Sinc~q,t !5
1

LE0

L

dŝ exp@2 iq•„r ~s,t !2r ~s,0!…#& ~4.9!

is studied as a function of time and scattering vectorq. Large
scattering vectors used in neutron scattering experiment
not probe long-time curvilinear motions. In this scatteri
vector regime the incoherent dynamic structure factor
dominated by the constraint motions of the chain molecu
Since the distribution of„r'(s,t)2r'(s,0)… is Gaussian for
our chain model, the calculation of the ensemble aver
yields

Sinc~q,t !5
1

LE0

L

dsexpS 2
q2

4
^„r'~s,t !2r'~s,0!…2& D ,

~4.10!

where

^„r'~s,t !2r'~s,0!…2&

5
4kBT

g (
n51

`

tncn
2~s!S 12expF2

t

tn
G D , ~4.11!

using Eqs.~4.2! and ~4.6!. The result~4.10! applies to a
purely transverse scattering geometry withq•„r i(s,t)
2r i(s,0)…50. This is what one expects for networks, whe
the longitudinal degree of freedom is suppressed and
cannot contribute to incoherent scattering. In a polymer m
however, the evolution of longitudinal motions is coupled
transverse undulations and causes a reptational motio
long times. The incoherent scattering properties of a rep
ing chain molecule were already described qualitatively
de Gennes@32#.

Figure 5 representsSinc(q,t) for various scattering vec
tors. In the calculations, the contour length and the per
tence length were fixed toL5100 nm andl p51 nm, respec-
tively. The lateral confinement of the chain molecules
characterized by the tube radiusR51.5 nm. From the figure
it is apparent that the incoherent dynamic structure fac
exhibits a plateau indicating the tube constraints. This p
teau becomes more pronounced with decreasing scatte

FIG. 5. Incoherent dynamic structure factor for different scatt
ing vectors:q50.5, 1, and 1.5 nm21. The scattering vector in-
creases from top to bottom. The contour length and the persist
length are given byL5100 nm andl p51 nm, respectively. The
tube radius is fixed toR51.5 nm.
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vector. At small scattering vectors the dynamics on lar
length scales are probed. Thus, by studying the incohe
dynamic structure factor at different scattering vectors,
tube radius can be extracted.

Using the transformation~4.2! and the correlation func
tion ~4.6!, the coherent dynamic structure for a purely tran
verse scattering geometry

S~q,t !5
1

L2E0

L

dsE
0

L

ds8^exp@2 iq•„r'~s,t !2r'~s8,0!…#&

~4.12!

can be calculated.S(q,t) exhibits a rapid relaxation for shor
times, which changes into a plateau for longer times.
have already discussed the initial decay of the coherent
namic structure factor and found a strong dependence of
quantity on molecular stiffness@33#. The major result of the
present calculations is the plateau similar to that found
the incoherent dynamic structure factor. A time-independ
plateau of the coherent dynamic structure is well kno
from the theory of the dynamics of polymer melts~see, for
example,@34–36#!. But the underlying physical mechanism
are different. In the local reptation model of de Gennes@34#
the time-independent plateau arises from internal dilatati
and contractions of a flexible chain molecule inside a fix
tube. Des Cloizeaux formulated a rubberlike model w
fixed entanglement points@36#. Two branches of a flexible
polymer chain, which are separated by a fixed entanglem
point, are considered as independent from each other. Co
ent scattering from two branches is therefore assumed t
time independent@36#. But the plateau of the coherent dy
namic structure factor observed in our calculations ari
from restricted transverse fluctuations. These transverse
tuations are of particular importance for semiflexible ch
molecules because internal longitudinal fluctuations are s
pressed by the constraint of inextensibility.
, J
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V. SUMMARY

We have studied equilibrium and dynamical properties
semiflexible chain molecules in a harmonic confinement
tential using an analytical approach. The chain molecules
confined in tubelike cages. The partition function of t
chain molecules can be calculated exactly. Equilibrium pr
erties exhibit qualitative differences between the weak a
the strong confinement behavior. For strong confinem
there are additional oscillatory modulations of the positi
vector correlation function. The period of the spatia
damped oscillations is found to be the deflection length fi
introduced by Odijk@7#.

The dynamics of the transverse fluctuations is discus
by means of a Langevin equation which is solved in terms
a normal mode analysis. The confinement force acts to s
press normal modes with amplitudes larger than the t
radius. Our calculations of the mean square displacemen
the monomers and the incoherent dynamic structure fa
exhibit a time-independent plateau. This plateau indicates
reduced transverse mobility due to the constraints. Gener
we found a crossover from single chain to constraint do
nated behavior with increasing time. A comparison of t
theoretical calculations with measurements of the m
square displacement of actin filament networks shows g
agreement.

The studies presented in the current article indicate
the semiflexible chain model in a harmonic confinement
tential captures essential features of chain molecules in c
fined environments. In further studies it should be interest
to include more complicated confinement potentials. T
can be achieved by using a variant of the Feynman-t
variational principle@37# for the partition function of the
effective Gaussian chain model presented in this paper.
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